The cyclic homology of algebras with adjoined unit
نویسندگان
چکیده
منابع مشابه
On the cyclic Homology of multiplier Hopf algebras
In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...
متن کاملPeriodic Cyclic Homology of Iwahori-hecke Algebras
We determine the periodic cyclic homology of the Iwahori-Hecke algebras Hq, for q ∈ C∗ not a “proper root of unity.” (In this paper, by a proper root of unity we shall mean a root of unity other than 1.) Our method is based on a general result on periodic cyclic homology, which states that a “weakly spectrum preserving” morphism of finite type algebras induces an isomorphism in periodic cyclic ...
متن کاملHopf Algebra Equivariant Cyclic Homology and Cyclic Homology of Crossed Product Algebras
We introduce the cylindrical module A♮H, where H is a Hopf algebra with S2 = idH and A is a Hopf module algebra over H. We show that there exists a cyclic map between the cyclic module of the crossed product algebra A⋊H and ∆(A♮H), the cyclic module related to the diagonal of A♮H. In the cocommutative case, ∆(A♮H) ∼= C•(A ⋊H). Finally we approximate ∆(A♮H) by a spectral sequence and we give an ...
متن کاملCyclic Homology of Hopf Comodule Algebras and Hopf Module Coalgebras
In this paper we construct a cylindrical module A♮H for an Hcomodule algebra A, where the antipode of the Hopf algebra H is bijective. We show that the cyclic module associated to the diagonal of A♮H is isomorphic with the cyclic module of the crossed product algebra A ⋊H. This enables us to derive a spectral sequence for the cyclic homology of the crossed product algebra. We also construct a c...
متن کاملHochschild and cyclic homology of Yang-Mills algebras
The aim of this article is to compute the Hochschild and cyclic homology groups of the Yang-Mills algebras YM(n) (n ∈ N≥2) defined by A. Connes and M. Dubois-Violette in [CD1], continuing thus the study of these algebras that we have initiated in [HS]. The computation involves the use of a spectral sequence associated to the natural filtration on the universal enveloping algebra YM(n) provided ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1991
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1991-1057953-5